
A simple classi�cation of discrete system
interactions and some consequences for the

solution of the interoperability puzzle

Johannes Reich ∗ Tizian Schröder ∗∗

∗ SAP SE, 69190 Walldorf, Germany (e-mail: johannes.reich@sap.com)
∗∗ Otto von Guerike Universität, 39106 Magdeburg, Germany (e-mail:

tizian.schroeder@ovgu.de)

Abstract: In this article, we introduce a classi�cation of system interactions to guide the discourse on
their interfaces and interoperability. It is based on a simple, but nevertheless complete classi�cation of
system interactions with respect to information transport and processing. Information transport can
only be uni- or bidirectional and information processing is subclassi�ed along the binary dimensions
of state, determinism and synchronicity.
For interactions with bidirectional information �ow we are able to de�ne a criterion for a layered
structure of systems: we name a bidirectional interaction ”horizontal” if all interacting systems behave
the same with respect to state, determinism and synchronicity and we name it ”vertical” — providing a
semantic direction — if there is a behavioral asymmetry between the interacting systems with respect
to these properties.
It is shown that horizontal interactions are essentially stateful, asynchronous and nondeterministic and
are described by protocols. Vertical interactions are essentially top-down-usage, described by object
models or operations, and bottom-up-observation, described by anonymous events.
The interaction classi�cation thereby helps to better understand the signi�cant relationships that are
created between interacting discrete systems by their interactions and guides us on how to talk about
discrete systems, their interfaces and interoperability.
To show its conceptual power, we apply the interaction classi�cation to assess several other architec-
tural models, communication technologies and so called software design or architectural styles like
SOA and REST.

Keywords: horizontal interaction, vertical interaction, interface, protocol, software layering

1. INTRODUCTION

Civil, mechanical, electrical, or software engineering - they
all deal with the design of systems. The term ”system engi-
neering” was coined in the Bell Laboratories in the 1940s (e.g.
Buede (2011)). Especially with the advent of cyber physical
systems also the software engineering discipline articulates
the importance of a unifying view (e.g. Sifakis (2011)).

The base for such a unifying view is the common notion of a
system based on its functionality, that is its transformational
behavior — a notion that is tightly related to the concepts of
computability and determinism of computer science.

Although systems can be described as isolated entities, sepa-
rating the world into itself and the rest, their main purpose is to
interact. Hence, the notion of an interface as the representation
of a system with respect to its interactions with other systems
comes to the fore.

As our conception of a given system is only well de�ned as
we know its transformational behavior, the same is true for
its interfaces. Knowing the interfaces of some systems should
make the question, whether these systems can interoperate,
decidable. To ”interoperate” means that the information pro-
cessing in all involved systems is accomplished in a way that,
by interaction, a speci�ed purpose is full�lled (IEC, 2001�).

So far, so good — despite these considerations, the enormous
growth of the number of interacting electronic devices in the
last two decades, the internet, had been mainly due to seman-
tically 1 agnostic information transport protocols like HTTP,
FTP, SMTP, etc., leaving the essential problems of interoper-
ability within the sphere of the human mind.

In the meantime, however, technical information-processing
systems are increasingly being integrated into electronic inter-
actions on a content-level with a certain degree of autonomy.
Automation in particular, as the technology domain that deals
with the construction of processes or procedures that are per-
formed with minimal human assistance, has a great interest in
clear and systematic concepts of semantic interoperability.

But on the contrary, a plethora of di�erent technologies has
evolved, each with the promise to solve some aspects of the
interoperability puzzle. Especially for engineers not from com-
puter science this makes it quite di�cult to create interopera-
ble components with the required minimal e�ort. The di�erent
underlying models, in conjunction with di�erent terminolo-

1 We use the term ”semantic” as a synonym for ”with respect to processing”
to emphasize the distinction between information transport and information
processing. In this sense, we say that information gets transported and the
meaning of the information, its signi�cance, is attributed by proccessing
within interactions. We speak more concrete of an ”interaction semantics”.



gies, or — even worse — with the same terminology, hinder
mutual understanding and drive the costs for successful device
integration. Roughly speaking, there is no mutual agreed lan-
guage to talk about interoperability, perhaps best exempli�ed
by the research gap we are addressing in this paper that despite
its widespread use of layer models in software engineering, a
clear ordering criterion for software components seems to be
lacking.

The contribution of this paper is a simple classi�cation of
discrete system interactions which can be viewed as an ex-
tension of the OSI-model (ITU-T, 1994) based on sound se-
mantic principles. It implies a clear ordering criterion for soft-
ware components — in fact, there are two tightly related ones.
And it makes it possible even for a non-software engineer to
avoid some fundamental mistakes in interoperability design.
In fact, we view it as a contribution to a reference model of
interaction semantics in the sense of a ”conceptual framework
for understanding signi�cant relationships among the entities
of networking systems, based on a small number of unifying
concepts” (MacKenzie et al., 2006).

Based on a proposal of one the authors, it has already been
adopted by the German VDI/VDE Fachausschuss GMA 7.20 for
their VDI-guideline 2193 (VDI, 2019) and the German BITKOM
AK Interoperabilität for their recent whitepaper to provide
guidance for the German industry on semantic interoperability
(Bitkom, 2020). One of its main conclusions that horizontally
interacting systems do so in a nondeterministic, stateful, and
asynchonous way strongly in�uenced the initiation of the
project ”Verwaltungsschale vernetzt” (Diedrich, 2019).

The structure of the article is as follows. In the second section
we lay out the formal de�nitions of the basic notions which
we need to build our reference model. In the third section we
introduce a simple classi�cation of system interactions based
on information �ow and processing. In the forth section we use
our reference model to discuss other state of the art reference
models, so called architectural styles and interaction support-
ing technologies. And in the last section, we summarize a
couple of direct consequences of our reference model.

2. THE MODEL OF SYSTEM INTERACTION

In this section we provide formal de�nitions for the basic
notions that our interaction classi�cation is based upon. Due
to the scope of this article, we will use them only to make the
meaning of our classifcation more explicit and not to derive
more intricate relationships between them (For more details,
see e.g. Reich (2016/2020)).

Figure 1. A symbolic representation of a system with its three
signals (in, out, q) : T → Q × Iε × Oε and its system
function f , separating the inside from the outside.

There seems to be a consensus (e.g. IEC (2001�)) that a system
separates an inside from the rest of the world, the environment
(see Fig. 1). We de�ne what we call a discrete multi-input
system to consist of a set of discrete time values T together
with a time function succ which always provides the next
point in time; three signals, an input signal in, an output
signal out and an internal signal q, each mapping time onto
the respective alphabet I , O, and Q; and a system function f
mapping input and internal signal values at time t onto output
and internal signal values at time t′ = succ(t). The system
is called a multi-input system because it could well be that
the input characters are vectors, where some components for
some characters remain empty. With the convention that ε is
the empty character and for any alphabetAwe writeAε = A∪
{ε}, we therefore have the following formal de�nition:

De�nition 2.1: A discrete system S is de�ned as S =
(T, succ,Q, I,O, q, in, out, f). Q, I and O are alphabets,
whereas onlyQ has to be non-empty. The signals (q, in, out) :
T → Q × Iε × Oε form a discrete system for the time step
(t, t′ = succ(t)) if the partial function f : Q× Iε → Q× Oε
with f = (f int, fext) maps as following(

q(t′)

out(t′)

)
=

(
f int(q(t), i(t))

fext(q(t), i(t))

)
.

If the input signal contains two or more components, we also
call it a ”multi-input system” (MIS).

We can describe the behavior of a discrete system with an
I/O-transition system. Thereby we get rid of the explicit time
dependency, exploiting its stepwise character. Additionally we
are able to look at the behavior of a discrete system in the sense
of a projection, which becomes essential for protocols.

De�nition 2.2: An I/O-transition system A is de�ned as
A = (Q, I,O, q0,∆)A.QA, IA andOA are alphabets, whereas
only Q has to be non-empty. q0 ∈ Q is the initial value and
∆A ⊆ Iε ×Oε ×Q×Q is the transition relation.

Such an A describes the behavior of a discrete system S
in the sense of a projection, if QS ⊆ QA, IS ⊆ IA,
OS ⊆ OA, q(0) = q0 and a projection function 2 π =
(πQ, πI , πO) : QS × IεS × OεS → QA × IεA × OεA exists
and ∆A is the smallest possible set, such that for all times
(t, t′ = succ(t)) ∈ TS × TS , and for all possible signal runs it
holds (πQ(q(t)), πQ(q(t′)), πI(in(t)), πO(out(t′))) ∈ ∆A.

We can say that our model of information processing treats
information as characters of an alphabet and presupposes a
processing context in the form of an I/O-transition relation.

As is illustrated in Fig. 2, interaction between discrete systems
means that they share a common signal: The output signal
of a ”sender” system is identical with the input signal of a
”receiver” system. Thereby the output value of a transition
of a ”sender” system serves as the input value of a transition
of a ”receiver” system. In other words, interaction means that
information is transported and the execution schema of the
product automaton has to be modi�ed such that a ’transported’
character has to be processed next.

The interaction mechanism is thereby formally based on iden-
tically named input and output characters of otherwise anony-
mous transitions 3 .
2 A projection function π ful�ls the property π = π ◦ π.
3 There are many interaction models based on transition systems with named
transitions, where the coupling of di�erent systems is achieved by identically



Figure 2. Interaction between two systems where the output
character of a sender system is used as an input character
of the receiving system.

For our classi�cation of system interaction in the next section,
we de�ne the following behaviors for sender and receiver
systems.

• A sending system behaves synchronously if the comple-
tion of the receiver’s transition is a necessary and su�-
cient requirement for the sending system’s next transi-
tion. Otherwise it behaves asynchronously.
• A receiving system behaves deterministically if its transi-

tion relation represents a transition function. Otherwise
it behaves nondeterministically
• A receiving system behaves statefully if its set of internal

state values Q has more than one element. Otherwise it
behaves stateless.

Please note that in our de�nition, synchronicity is a property
of the sending system. That is, whether a sender waits or not
(behaves synchronously or asynchronously) is not detectable
by the receiver, processing any received character.

Whether an interaction is deterministic or nondeterministic
in�uences the kind of goal of the interaction. In the �rst case,
the goal of the interaction is a superordinated function, lead-
ing to system composition (Reich, 2016/2020). In the second
case, without creation of a superordinated system function, the
need to distinguish desirable from non-desirable behavior ne-
cessitates an additional acceptance component, extending the
I/O-transition systems to become I/O-automata or transducers,
leading to protocols.

3. CLASSIFICATION OF SYSTEM INTERACTION

The essential idea (Reich, 2015) is that system interactions can
be classi�ed along the two relevant aspects of interoperability:
information transport and information processing. Informa-
tion transport can be either unidirectional or bidirectional.
Information processing is further subclassi�ed along the three
subdimensions state, determinism and synchronicity (see sec-
tion 2).

We have chosen these three subdimensions of information
processing because of their direct in�uence on the form of
the appropriate interface. For example: there are no return
parameters in the asynchronous case. In the deterministic
case, it is possible to represent the intended input-output-
relation of a system by an operation, mapping state values onto
state values. With statefulness and determinism the desired
functionality can be described object oriented and last but not

(or complementarily) named transitions, e.g. Hoare (1985/2004); Milner et al.
(1992).

least, we describe stateful, nondeterministic and asynchronous
interactions as protocols.

This classi�cation is complete in the sense that every interac-
tion, that can be described with the formalism of section 2, can
be classi�ed accordingly.

3.1 Interaction with unidirectional information �ow

As backward communication is irrelevant for unidirectional
interfaces, we can disregard any synchronicity. The two most
important classes are:

Deterministic: We name a sequence of systems a ”pipe”,
where an overall computational function is computed in a
number of successive steps on a ”data �ow”, where the input of
each pipe component is the output of the predecessor compo-
nent (except for the �rst one). Thereby pipes provide the means
for sequential and parallel system coupling (Reich, 2016/2020).
To be complete, a pipe mechanism must be able to fork and
join pipes.

Nondeterministic: We name an interaction between a sender
system and a receiver system an ”observation” if the sender
system makes no assumptions on the determinism and state-
fulness of the receiver system.

3.2 Interaction with bidirectional information �ow

As it is bidirectional, the �ow of information as such does not
determine any direction of the interaction relation any longer,
but the direction is determined by the way, the information is
processed in all interacting systems - and therefore is a seman-
tic property. We distinguish two main bidirectional interaction
classes:

Horizontal interaction: All interacting components behave
the same with respect to the three semantic sub-dimensions,
i.e. there is a behavioral symmetry. Only the combination
stateful, nondeterministic and asynchronous behavior makes
sense. Mutual determinism results in a deadlock where each
system waits for some input. Nondeterminism and stateless-
ness implies randomness. And mutual synchronous behavior
makes only sense in the calculation of recursive functionality.

Horizontal interactions are described by bi- or multilateral
interfaces of protocol roles. This multilaterality manifests itself
by the fact that the knowledge of all roles of a protocol is
necessary to guarantee important properties of this form of
interaction.

Vertical interaction: the interacting components behave dif-
ferently with respect to the three semantic subdimension. The
resulting asymmetric setting creates a semantic direction of
the interaction. The ”lower” component behaves deterministi-
cally and can therefore be described by a function call (with
exceptions). We say that it does not make any assumptions
with respect to the behavior of the ”upper” component and
can therefore provide information upwards only by an event-
mechanism that is similar to the observation in the case of uni-
directional information �ow. Actually, within such an inter-
face, only the lower component is described with its function-
ality and its events — why we call these interfaces ”unilateral”.



3.3 Components and their hierarchies

Components: An important concept that is touched by our
classi�cation is that of components. Components are supposed
to be building blocks which easily �t together (e.g. Heineman
and Councill (2001); Szyperski (2002)).

Our classi�cation suggests to use both, the characteristics of
a system’s I/O relation as well as its composition behavior, to
de�ne the component concept. Two systems might comprise
the same I/O-relation but may di�er in their composition
behavior like operations versus pipes. Both are deterministic
(according to our de�nitions), but operations provide their
output back to the component where they received their input
from, while pipe components provide their output to the ”next”
component of the pipe.

Bidirectional interactions creating complex recursive func-
tionality do not follow any simple composition scheme and
should be avoided on the level of components. Thereby, from
an software engineering point of view, components also mark
a systematic border of design complexity, where any func-
tionality that is created by general recursion moves into the
component’s innards.

Layers: Our rather simple classi�cation allows the de�nition
of a layering in a component based system and thereby re-
lates interoperability to these di�erent layers. Components
that interact vertically belong to di�erent layers, components
that interact horizontally belong to the same layer. Observed
components belong to lower layers and all components of a
pipe belong to the same layer.

Please note, that one has to be precise to what kind of hierar-
chical relation one refers. To illustrate the problem, we provide
a simple example. Fig 3 shows a simple system composition
where three systems S1, S2, and S3 compose to a supersystem
S with system function fS(x) = 2x+5. System S2 contributes
its system function fS2(x) = 2x, S3 contributes fS3(x) = x+
5, and System S1 is a multi-input system which mostly coor-
dinates system S2 and S3 in a non-trivial recursive manner.
As we can easily see, there is no interaction between the sub-
systems and their supersystem, but instead, the supersystem
is created by the deterministic interactions of the subsystems.

Figure 3. Three systems S1, S2, and S3 compose to a supersys-
tem S with the overall (super)system function fS(x) =
2x+ 5.

According to our classi�cation, system S1 interacts hierarchi-
cally with both S2 and S3 as it determines their transitions
by its output and not vice versa. Thereby it is justi�ed to say
that because of their interaction, system S1 belongs to a higher
layer as both, systems S2 and S3. The supersystem S is not

mentioned at all in this description. This is shown in the left
side of Fig. 4.

However, we could also de�ne a hierarchical relation in the
sense of ”is-part-of” where both subsystems, S2 and S3, are
part of the supersystem S , which is shown in the right side of
Fig. 4. Now, system S1 is not mentioned any longer.

Figure 4. Due to their interactions, the systems of Fig. 3 can
be ordered in two di�erent ways. On the left side, they
are ordered according to their interaction relation. The
arrows represent the information �ow. The supersystem
S is only sketched in light gray to show that it does
actually span several layers in this hierarchy. Or they can
be ordered according to their ”is-part-of”-relation, shown
on the right side. Now it is the supersystemS that is super
ordinated. The relation is represented by a �lled diamond
and a solid line. There is no information �ow between the
layers.

This latter hierarchy is used in imperative programs and the
object oriented world with their method-construct. A method
represents a function which — if not elementary — depends
on other methods. Thus, with methods we do not follow an
interaction-oriented interface concept, but a structur-oriented
interface concept, supporting the ”is-part-of” relation.

The formal test for the claim, that a component can be put into
a certain layer is to provide a unilateral interface with generic
events and operations and to assure that the component itself
uses only operations and reacts to generic events of compo-
nents of lower layers.

With the ”is-part-of”-relation, the higher the layer, the more
abstract — or the less technical — is the level of information
processing.

Remote operations Remote operations take advantage of
the fact that a ”remote” operation can be partitioned into a
sequence of concatenated operations of serialization, deseri-
alization, transport and local processing.

In the case of a remotely used object, the communication com-
ponents of both sides become a ”communciation layer” that
can indeed be hidden behind the remote operation’s signa-
ture — adding, however, remote exceptions. Thus, despite the
similarity between a local and a remote object usage, the im-
ponderables of information transport usually introduces non-
determinism. Due to their (much) higher unreliablity, remote
operations should not be used to change remote state.

Protocols A protocol (see e.g. Holzmann (1991) for an over-
view) is best understood as a signaling game in the sense of P.
Grice (Grice, 1989) where all participants are only described as
a ”role” in the sense of a projection, giving each other mutual



hints and rely on the fact that their sent information will be
appropriately processed. In our model, each participating sys-
tem can be described in its participating role by an automaton
according to de�nition 2.2. A protocol has to be ”wellformed”
in the sense that for all sent characters there has to be a receiv-
ing transition, ”complete” such that there are no other inputs,
”interuptable” in the sense that it does not have in�nite chains
of interactions, and ”consistent” such that it should be possible
to meet the acceptance condition from each reachable state.

As P. Grice pointed out we can distinguish between an as-
sumed receiver semantics of the sender and the actual seman-
tics of the receiver. As both relate to the processing of the
receiver, they can easily be compared.

We think that extending the interaction description of proto-
cols by ”decisions” as an additional internal input alphabet to
�ll in the non-determinism leads to the game-notion (Reich,
2009).

4. STATE OF THE ART AND APPLICATION OF THE
REFERENCE MODEL

In this section we use our reference model to discuss other
state of the art reference models, so called architectural styles
and interaction supporting technologies.

4.1 The Open Systems Interconnection (OSI) basic reference
model

The Open Systems Interconnection (OSI) basic reference model
(ITU-T, 1994) was very in�uential, as it established the notion
of a layered software architecture.

However, the OSI model assumption, that ”OSI is concerned
with the exchange of information between open systems (and
not the internal functioning of each individual real open sys-
tem).” turns out to be inconsistent. One cannot refrain from
saying anything about the structure of information processing
and at the same time making claims about its inner structure,
like layering. Also, the OSI model was not su�ciently precise
with respect to the kind of hierarchy. And based on these
inconsistencies, the OSI-assumption that the information pro-
cessing between protocol-connected components always hap-
pens on equal layers proved to be wrong with remote function
calls.

Thus, our classi�cation provides a formal justi�cation of the
intuition of the OSI-model to view software applications as
being layered. Thereby, our model also explains, why the OSI-
model found its way into reality only up to its 4-th layer, as
the management of a ”session” state cannot be attributed to a
dedicated layer in the general case. Only in the case of vertical
interaction, the interaction related state can be encapsulated
into a state of an intermediate ”session layer”. In the case of
horizontal interaction, the interaction related state genuinely
belongs to the components of the same semantic layer that
mutually interact.

4.2 Examples of inadequate usage of the layer concept in models
of interoperability

We give three state of the art examples where the lack of
a consistent ordering criterion leads to an inconsistent layer
concept. As a result categories are mixed and these models

provide at most a more intuitive level of understanding, con-
siderably limiting their applicability for the engineer.

One example is the ”Level of Conceptual Interoperability
Model (LCIM)“ (Tolk et al., 2006), which consists of the 7
alleged layers: no [interoperability], technical, syntactic, se-
mantic [de�ned not in our sense], pragmatic, dynamic, and
conceptual interoperability. Obviously, it is not interaction
which accounts for this hierarchy, but what else? Even for the
technical information transport e.g. by the internet protocol,
a certain structure (=syntax) of the transported information is
necessary. It is unclear how to separate semantic from prag-
matic aspects. For example, how can the meaning of a bank
tranfer be described without refering to some action a bank is
supposed to take? Etc.

Another example is the architecture axis of the three-dimen-
sional Reference Architecture Industry 4.0 (RAMI4.0) (DIN,
2016). It consists of the 6 alledged layers: asset, integration,
communication, information, functional and business. Again
it is not interaction that accounts for this hierarchy. And no
other criterion is given.

A third example is the IIC Connectivity Framework (Industrial
Internet Consortium). It builds upon parts of the LCIM. The
transport layer is supposed to achieve technical interoperabil-
ity and a framework layer is supposed to achieve syntactical
interoperability in the sense of providing all means to ex-
change structured data. However, determining the type of the
exchanged data also determines whether it is to be understood
as an operation, as a business document or a generic event —
requiring an agreement on the interaction class beforehand.
As a result, the authors neglect to discuss how to support the
important class of horizontal interactions.

In e�ect, most of these so called ”layers” are in fact aspects,
that is, something that can be described from a certain point of
view in the sense of a projection. Thus, we have data aspects,
communication aspects, functional aspects, etc. But all these
aspects overlap and do not constitute a hierarchical division of
the thing of interest.

4.3 Interaction pattern based approaches

There exist quite a few approaches that present themselves as
”pattern based” and often claim to be motivated by the speech
act theory (Austin, 1962). Examples are the UN/CEFACT mod-
elling methodology (UN/CEFACT, 2003) or RosettaNet (Roset-
taNet, 2001) using ”transaction patterns”. A similar concept
had been the ”message exchange pattern” (W3C, 2007) of the
service oriented architecture (SOA).

The application of our classi�cation already fails at the very
beginning, as these approaches do not relate su�ciently to
the transformational behavior — the processing capabilities —
of the interacting systems. Without referring to the transition
relation of sender and/or receiver, the semantics (=processing)
of any ”interaction pattern” is illde�ned.

An example for a total lack of reference to the transforma-
tional behavior was SOA. The idea of a SOA was introduced
by Roy W. Schulte and Ye�m V. Natis of Gartner in 1996
(Schulte and Natis, 1996) and it was endorsed by virtually all
large IT companies like Microsoft, IBM, SUN, Oracle, Adobe,
SAP, etc. Within the OASIS SOA reference model (MacKenzie
et al., 2006), a service is de�ned vaguely as a ”Mechanism to



enable access to one or more capabilities where the access is
provided by a prescribed interface and is exercised consistent
with constraints and policies as speci�ed by the service de-
scription.” At no place within SOA the service de�nition refers
to some transformational behavior, making any distinction
between deterministic vs. nondeterministic interaction impos-
sible. But, from a syntactic point of view, SOA ties oneself
down to (remote) objects with methods. Thus, well de�ned
services speci�ed by a WSDL-speci�cation can only represent
accessible functionality — and not multilateral interfaces of
protocol participants, which is the true interface of a service
as it is understood by economists. For example to get a wall
painted in a newly build house, one has to invite o�ers, accept
a bid, arrange and rearrange appointments, check the result
and, in case of acceptance, pay the bill and �nally keep the
documents for tax relief — a relation full of state, asynchrony
and nondeterminism.

4.4 Representational State Transfer (REST)

REST (Fielding, 2000) can be viewed as the attempt to trans-
fer the principles of stateless communication together with
semantic agnostics - both principles of the HTTP-protocol -
onto the interactions of networking applications. Currently it
is often positioned as a simpler variant of SOA.

A REST-service is supposed to adhere to the principle of ad-
dressability, that each resource has to have a unique URI, and
statelessness, that each REST-message is supposed to contain
all the information that is necessary for the processing which
it initiates. Sometimes idem potency (e.g. Pautasso (2014)) is
mentioned, that the called transport methods are supposed to
have an identical e�ect, no matter when they are called.

These ”principles” are in direct contradiction to the proposed
interaction model where horizontal interactions usually are
stateful and the exchanged information is usually not pro-
cessed in an idempotent way. From the perspective of the
proposed interaction model, REST is a methodological chimera
with parts from the object as well as the protocol world. On
the one side, it only speci�es a letter-box mechanism, which
gives some of the letter life cycle functionality to the sender.
It does not require to specify the transformation behavior of a
REST-service or the relation between di�erent REST-services.
But on the other side, it requires that all resources have to
be published to the public, o�ering a lot of otherwise private
information.

4.5 Evaluating interaction supporting technologies

One strength of our interaction classi�cation is to allow a
simple assessment of whether a given interaction supporting
technology supports a certain interaction class. Thereby we
can specify its right domain of use and point out when it fails.
First, it separates these technologies into information trans-
port versus information processing categories, depending on
whether they relate to the content of the transported informa-
tion or not.

Then it makes clear that content-oriented technologies sup-
porting only remote object models like DCOM or OPC-UA
are of little value when it comes to implement protocol based
interactions.

It also explains, why it is inappropriate to use technologies
primarily supporting unidirectional observation like publish-

subscribe (e.g. MQTT) for bidirectional horizontal interactions,
as is the case in many ”service-bus”-models. In a unidirectional
observation the sender does not make any assumptions about
the processing of the receiver. Thus, the created events either
have a strongly standardized format, like instance X of type Y
changed its state from Z1 to Z2 - making mutual understanding
impossible. Or the created events become arbitrarily broad to
contain all the information that is possibly available, just in
case, the (unknown) receiver might �nd it necessary.

We also can derive a simple necessary requirement for any
technology to support horizontal interactions, namely in order
to implement protocol roles most naturally, it should support
state machines and documents,

5. CONCLUSION

We introduced a rather simple classi�cation of interactions of
discrete systems. It is supposed to guide the discourse on inter-
operability, what the real challenges are, how to achieve them,
etc. within the system engineering community for example in
standardization e�orts.

Our model is conceptually sparse as it uses very little ad hoc
assumptions. It is based on a sound system model, fully com-
patible with the model of information transport and process-
ing. And it is expressive as it entails a whole series of important
practical consequences:

• An interface of a system is only so well de�ned as it states
the transformational behavior with respect to the inter-
action the system is involved in. Only then we can make
further statements about interoperability in a semantic
sense, that is, related to the respective processing of the
exchanged information.

• The relation between interacting systems is determined
by their interaction and cannot be arbitrarily chosen.

• It shows the importance of a precise and veri�able order
criterion for a well de�ned layer-structure of systems.

• It is very important to distinguish between interaction
scenarios with unidirectional and bidirectional informa-
tion �ow. Especially, an interaction with bidirectional
information �ow is not just the superposition of two
otherwise independent single-�ow scenarios. Adding an
information �ow ”backwards” in a formely single-�ow
scenario changes the game of interoperability fundamen-
tally.

• Looking only at the act of information transport, one can-
not say — per de�nition — anything about the processing
of the information, for example, whether the processing
of the information is stateful, synchronous or determin-
istic. Thus, terms like ”message based integration” may
even be misleading, as they suggest that the processing
context of the transported information can be ignored.

• Any attempt to propose some inner structure of informa-
tion processing systems without refering to the structure
of the information processing itself is inconsistent.

• Horizontal interactions are nondeterministic, asynchro-
nous and stateful.

• Technologies providing only access to remote function-
ality in the sense of object models, are of little help to
implement horizontal interactions.

• To easily structure applications into layers, an internal
event mechanism is needed to avoid the use of operation
calls to provide information for higher level processing.



Only without circular functional dependencies does an
operation call formally indicate a descent into a lower
software layer.
• We have to distinguish between transformational and

compositional behavior, leading to the distinction be-
tween systems and components.

REFERENCES

Austin, J.L. (1962). How to Do Things with Words. Cambridge
(Mass.).

Bitkom (2020). Vorschlag zur systematischen Klassi�kation
von Interaktionen in Industrie 4.0 Systemen – Hinführung
zu einem Referenzmodell für semantische Interoperabilität.
White paper.

Buede, D.M. (2011). The engineering design of systems: models
and methods, volume 55. John Wiley & Sons.

Diedrich, C. (2019). Verwaltungsschale vernetzt - Interoperabil-
ität zwischen I4.0 Komponenten. Forschungsportal Sachsen-
Anhalt.

DIN (2016). SPEC 91345:2016-04 Referenzarchitekturmodell
Industrie 4.0 (RAMI4.0).

Fielding, R. (2000). Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. thesis, Univer-
sity of California, Irvine.

Grice, H.P. (1989). Studies in the Way of Words. Harvard
University Press.

Heineman, G.T. and Councill, W.T. (eds.) (2001). Component-
based Software Engineering: Putting the Pieces Together.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Hoare, C. (1985/2004). Communicating Sequential Processes.
Prentice Hall.

Holzmann, G.J. (1991). Design and validation of computer
protocols. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

IEC (2001�). IEC 60050 International Electrotechnical Vocab-
ulary.

Industrial Internet Consortium (2018). IIC: The Industrial
Internet of Things, Volume G5: Connectivity Framework.

ITU-T (1994). X.200 Information Technology - Open Systems
Interconnection – Basic Reference Model.

MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., and
Metz, R. (eds.) (2006). Reference Model for Service Oriented
Architecture 1.0. OASIS.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mo-
bile processes (parts I and II). Information and Computation,
100(1), 1–77.

Pautasso, C. (2014). RESTful web services: principles, patterns,
emerging technologies. In Web Services Foundations, 31–51.
Springer.

Reich, J. (2009). The relation between protocols and games.
In S. Fischer, E. Maehle, and R. Reischuk (eds.), Informatik
2009: Im Focus das Leben, Beiträge der 39. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), 28.9.-2.10.2009, Lübeck,
Proceedings, volume 154 of LNI, 3453–3464. GI.

Reich, J. (2015). Eine semantische Klassi�kation von System-
interaktionen. In D. Cunningham, P. Hofstedt, K. Meer,
and I. Schmitt (eds.), INFORMATIK 2015, Lecture Notes in
Informatics (LNI), Gesellschaft für Informatik, Bonn, 1545–
1559.

Reich, J. (2016/2020). Composition, cooperation, and coordina-
tion of computational systems. CoRR, abs/1602.07065.

RosettaNet (2001). Implementation Framework: Core Speci�ca-
tion, V02.00.00.

Schulte, R.W. and Natis, Y.V. (1996). ”Service-Oriented” Archi-
tectures, Part 1 and 2. SSA Research Notes SPA-401-068, -069,
Gartner Group.

Sifakis, J. (2011). A vision for computer science - the system
perspective. Central European Journal of Computer Science,
1(1), 1008–116.

Szyperski, C. (2002). Component Software, Beyond Object-
Oriented Programming. Addison-Wesley, 1 edition.

Tolk, A., Turnitsa, C.D., Diallo, S.Y., and Winters, L.S. (2006).
Composable M&S web services for net-centric applications.
The Journal of Defense Modeling and Simulation, 3(1), 27–44.

UN/CEFACT (2003). ModellingMethodology (UMM)User Guide,
V20030922.

VDI (2019). VDI/VDE 2193-1 — Language for I4.0 components
- Structure of messages.

W3C (2007). Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language.


